Evolution of reproductive effort in viscous populations: the importance of population dynamics

Sébastien Lion*

Supplementary Online Material

S1 Monomorphic population

In this appendix, I show how to compute the equilibrium density $q_{o / o x}$, which proves useful in the simplification of the expression for the selection gradient. In the monomorphic population, the dynamics of pairs $o \times$ and $\times \times$ are given by

$$
\begin{aligned}
\frac{d p_{o \times}}{d t} & =d p_{\times \times}+p_{o o}\left((1-P) b \bar{\phi} q_{\times / o o}+P \sigma b p_{\times}\right)-p_{o \times}\left(d+(1-P) b\left(\phi+\bar{\phi} q_{\times / o \times}\right)+P \sigma b p_{\times}\right) \\
\frac{d p_{\times \times}}{d t} & =-2 d p_{\times \times}+2 p_{o \times} b\left((1-P)\left(\phi+\bar{\phi} q_{\times / o \times}\right)+P \sigma p_{\times}\right)
\end{aligned}
$$

where $\phi=1 / n$ is the inverse of the number of neighbours of each site on the network, and $\bar{\phi}=1-\phi$. Adding the second equation and twice the first equation yields at equilibrium

$$
0=2 p_{o o}\left((1-P) b \bar{\phi} q_{\times / o o}+P \sigma b p_{\times}\right)-2 d p_{o \times}
$$

Using the fact that $p_{o o} q_{\times / o o}=q_{o / o \times} p_{o \times}$ and $p_{o o}=p_{o}-p_{o \times}$, we can rearrange this equation and obtain an exact expression for $q_{o / o \times}$ as a function of $q_{o / \times}$ and p_{o}. Using equation (1) in the main text, we can further express the equilibrium density $q_{o / o \times}$ in the monomorphic population in function of $q_{o / \times}$ only.

S2 Deriving the selection gradient

The computation of the selection gradient requires some tedious algebraic manipulations, so rather than providing the full derivation, I sketch the different steps of the derivation. Further details about the method used can be found in van Baalen and Rand (1998); Lion and Gandon (2009); Lion (2009).

The per-capita growth rates of R and M individuals are

$$
\lambda_{R}=(1-P) b_{R} q_{o / R}+P \sigma b_{R} p_{o}-d_{R}
$$

and

$$
\lambda_{M}=(1-P) b_{M} q_{o / M}+P \sigma b_{M} p_{o}-d_{M}
$$

In the neutral model $\left(b_{M}=b_{R}=b, d_{M}=d_{R}=d\right)$, it follows that at equilibrium $q_{o / R}=q_{o / M}=q_{o / \times}$. In the model with selection, if the mutant is rare and the resident population is at equilibrium, we have $\lambda_{R}=0$, and we can Taylor-expand the invasion fitness λ_{M} around the neutral point. This gives

$$
\Delta \lambda_{M}=\left[(1-P) q_{o / x}+P \sigma p_{o}\right] \Delta b+(1-P) b \Delta q_{o / M}-\Delta d
$$

Note that although the global density p_{o} is fixed by the resident trait, the local density $q_{o / M}$ will depend on the reproductive effort of mutants.

[^0]Equipped with this first expression for invasion fitness, we will now derive the expression of $\Delta q_{o / M}$. Let \boldsymbol{p} be the vector of pair densities $\left(\begin{array}{lll}p_{o M} & p_{R M} & p_{M M}\end{array}\right)^{T}$. The dynamics of \boldsymbol{p} is given by

$$
\frac{d \boldsymbol{p}}{d t}=\boldsymbol{M} \boldsymbol{p}
$$

where $\boldsymbol{M}=\boldsymbol{M}_{0}+P \sigma \boldsymbol{M}_{1}$. From van Baalen and Rand (1998) and Lion and Gandon (2009), we know that

$$
\boldsymbol{M}_{0}=\left(\begin{array}{ccc}
-(1-P) b_{M}\left(\phi+\bar{\phi} q_{M / o M}-\bar{\phi} q_{o / o M}\right)-(1-P) b_{R} \bar{\phi} q_{R / o M}-d_{M} & d_{R} & d_{M} \\
(1-P)\left(b_{R}+b_{M}\right) \bar{\phi} q_{R / o M} & -d_{R}-d_{M} & 0 \\
2(1-P) b_{M}\left(\phi+\bar{\phi} q_{M / o M}\right) & 0 & -2 d_{M}
\end{array}\right)
$$

The mortality terms are simple to understand because mortality is density-independent in this model. Therefore, a term of the form $d_{R} p_{R M}$ indicates the contribution to the dynamics of the death of a R individual in a $R M$ pair. For reproduction events, some further explanation is needed. First, the matrix M_{0} only collects the contributions of local reproduction events, hence the factor $(1-P)$. Second, the first column of \boldsymbol{M}_{0} derives from a bookkeeping of all possible reproductive events that may affect a pair $o M$. Consider for instance the transition $o M \rightarrow M M$, which yields the term in the lower left-hand side corner of the matrix. Then, the empty site can be filled either by the offspring of the individual in the pair (at rate $b_{M} / n=\phi b_{M}$) or by a M individual connected to the empty site of the $o M$ pair, which occurs at rate $(n-1) / n q_{M / o M} b_{M}$. The factor 2 on the last line of \boldsymbol{M}_{0} comes from the fact that pairs are counted in both directions (Rand, 1999), hence pairs $M M$ are counted twice.

Computing \boldsymbol{M}_{1} is a bit more complex, but we obtain the following expression

$$
\boldsymbol{M}_{1}=\left(\begin{array}{ccc}
-\left(b_{M} p_{M}+b_{R} p_{R}\right)+\frac{q_{o / o}}{q_{o / M}} p_{o} b_{M} & 0 & 0 \\
\frac{q_{o / R}}{q_{o / M}} b_{M} p_{R}+b_{R} p_{R} & 0 & 0 \\
2 p_{M} b_{M} & 0 & 0
\end{array}\right)
$$

The term on the first row gives the rate at which a pair $o M$ is altered by long-distance reproduction events; either the pair is destroyed when a random R or M individual reproduces to the empty site in the pair, or it is created from a oo pair through long-range reproduction of a mutant. This affects the dynamics of $o M$ pairs by a term $b_{M} p_{M} p_{o o}$, which can be rewritten because $p_{M}=p_{o M} / q_{o / M}$. The term on the second row gives the rate at which a $R M$ pair is created when a random resident individual reproduces into the empty site in a $o M$ pair, or when a random mutant individual reproduces into the empty site in a oR pair. The contribution to the dynamics is then $b_{M} p_{M} p_{o R}+b_{R} p_{R} p_{o M}$ which can be rewritten using the same trick as above. Finally, the term in the third row gives the rate at which pairs $M M$ are created through long-distance reproduction of mutants into the empty site of a $o M$ pair. Assuming the mutant is rare, the expression of M_{1} can be further simplified using $p_{M} \approx 0$ and $p_{R} \approx p_{\times}$(the equilibrium density in the monomorphic population)

$$
M_{1}=\left(\begin{array}{ccc}
-b_{R} p_{\times}+\frac{q_{o / o}}{q_{o / M}} p_{o} b_{M} & 0 & 0 \\
\frac{q_{o / R}}{q_{o / M}} b_{M} p_{\times}+b_{R} p_{\times} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

At neutrality $\left(b_{M}=b_{R}=b, d_{M}=d_{R}=d\right.$, and $\left.q_{o / R}=q_{o / M}=q_{o / \times}\right)$, the expression of the invasion matrix M can be simplified, and we can compute the left and right eigenvector of the neutral matrix associated with eigenvalue 0 . For the left eigenvector, we find $\boldsymbol{v}=\left(\begin{array}{lll}2 & 1 & 1\end{array}\right)$, and we know the right eigenvector is the vector $\boldsymbol{u}=\left(\begin{array}{lll}q_{o / M} & q_{R / M} & q_{M / M}\end{array}\right)^{T}$ (van Baalen and Rand, 1998; Lion and van Baalen, 2009). Further algebra yields

$$
\boldsymbol{u}=\left(q_{o / \times} \quad \frac{b q_{o / \times}}{d}\left(P \sigma p_{\times}+(1-P) \bar{\phi} q_{R / o M}\right) \quad \frac{b q_{o / \times}}{d}(1-P)\left(\phi+\bar{\phi} q_{M / o M}\right)\right)^{T}
$$

Note that this gives in particular an equation for the nearest-neighbour relatedness $r=q_{M / M}$ (Lion and Gandon, 2009; Lion, 2009) as a function of $q_{M / o M}$.

Assuming that the local densities equilibrate on a fast time scale compared to the global density of mutants, the invasion matrix \boldsymbol{M} can be approximated as a constant matrix whose dominant eigenvalue is the per-capita growth rate of the mutant when rare, that is, the invasion fitness (van Baalen and Rand, 1998; Ferrière and Le Galliard, 2001; Lion and van Baalen, 2009). The selection gradient is then given by

$$
\Delta \lambda_{M}=\frac{\boldsymbol{v} \Delta \boldsymbol{M} \boldsymbol{u}}{\boldsymbol{v} \boldsymbol{u}}
$$

where $\boldsymbol{\Delta} \boldsymbol{M}=\boldsymbol{\Delta} \boldsymbol{M}_{\mathbf{0}}+\operatorname{P\sigma } \boldsymbol{\Delta} \boldsymbol{M}_{\mathbf{1}}$ is the first-order effect of selection on the invasion matrix.
Assuming the mutant is rare and the resident population is on the monomorphic attractor, the only variables that will be affected by a change in reproductive effort are $b_{M}, d_{M}, q_{o / M}$ and the triple local densities $q_{i / o M}$. Using the expressions for $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{M}, we obtain after some rearrangements and simplifications an expression for $\Delta \lambda_{M}$ as a function of $\Delta b, \Delta d, \Delta q_{o / M}$ and $\Delta q_{o / o M}$ (note that $\left.\Delta q_{o / o M}=-\Delta q_{R / o M}-\Delta q_{M / o M}\right)$. The coefficients of the Δ terms are all evaluated in the neutral model.

Along with equation (5) in the main text, this gives a system of two equations with two unknowns $\Delta \lambda$ and $\Delta q_{o / M}$. Solving the system yields an expression for $\Delta q_{o / M}$ that depends on $q_{o / \times}, p_{o}=1-p_{\times}$, $q_{o / o x}, q_{R / o M}$ and $q_{M / o M}$. Further simplifications are possible, because p_{o} and $q_{o / o \times}$ can be expressed in terms of $q_{o / \times}$ (equation 1 in the main text, Appendix S1), because $q_{R / o M}=1-q_{M / o M}-q_{o / o M}=$ $1-q_{M / o M}-q_{o / o x}$, and $q_{M / o M}$ can be expressed in terms of nearest-neighbour relatedness $r \equiv q_{M / M}$ using the expressions of the eigenvector \boldsymbol{u}. Putting everything together we finally obtain equation (6) in the main text.

S3 Habitat degradation

I will now extend the previous model by adding a degraded state (u). Degraded state are created when an individual dies, and become empty at rate ν. The per-capita growth rate of individuals of type $i=R$ or M takes the same form as previously

$$
\lambda_{i}=(1-P) b_{i} q_{o / i}+P \sigma b_{i} p_{o}-d_{i}
$$

If follows that, in a monomorphic population, equation (1) in the main text still holds true in this model. From the expression for invasion fitness λ_{M}, equation (9) in the main text follows readily.

Now, in order to describe the invasion dynamics in more detail, we need to track four pair densities $p_{o M}, p_{R M}, p_{M M}$ and $p_{u M}$. I will restrict my attention to the limiting case $P=0$. In this case we obtain the following invasion matrix

$$
\boldsymbol{M}=\left(\begin{array}{cccc}
-b_{M}\left(\phi+\bar{\phi} q_{M / o M}-\bar{\phi} q_{o / o M}\right)-b_{R} \bar{\phi} q_{R / o M}-d_{M} & 0 & 0 & \nu \\
\left(b_{M}+b_{R}\right) \bar{\phi} q_{R / o M} & -d_{R}-d_{M} & 0 & 0 \\
2 b_{M}\left(\phi+\bar{\phi} q_{M / o M}\right) & 0 & -2 d_{M} & 0 \\
b_{M} \bar{\phi} q_{u / o M} & d_{R} & d_{M} & -\nu-d_{M}
\end{array}\right)
$$

As previously, we can compute the eigenvectors of the neutral invasion matrix associated with eigenvalue 0 and we find

$$
\boldsymbol{v}=\left(\begin{array}{llll}
2 \frac{d+\nu}{\nu} & 1 & 1 & 2
\end{array}\right)
$$

and

$$
\boldsymbol{u}=\left(\begin{array}{llll}
q_{o / M} & q_{R / M} & q_{M / M} & q_{u / M}
\end{array}\right)^{T}=\left(\begin{array}{cccc}
\frac{d}{b} & \bar{\phi} q_{R / o M} & \phi+\bar{\phi} q_{M / o M} & \frac{d}{d+\nu}\left(1-\bar{\phi} q_{o / o M}\right.
\end{array}\right)^{T}
$$

Using the perturbation analysis of Appendix S2, we find

$$
\begin{align*}
\Delta \lambda_{M}= & \Delta b q_{o / M}\left[2(d+\nu) \bar{\phi} q_{o / o M}+\nu \bar{\phi} q_{R / o M}+2 \nu \bar{\phi} q_{u / o M}-2 d\left(\phi+\bar{\phi} q_{M / o M}\right)\right] \tag{S1}\\
& -\Delta d\left[2(d+\nu) q_{o / M}+\nu\left(q_{R / M}+2 q_{u / M}\right)\right]
\end{align*}
$$

after neglecting the terms in $\Delta q_{i / o M}$ with $i=o, R, M, u$. We can simplify things further by noting that, from the expression of \boldsymbol{u}, we have $q_{o / M}=d / b=q_{o / \times}, \bar{\phi} q_{R / o M}=q_{R / M}, \phi+\bar{\phi} q_{M / o M}=q_{M / M}, \bar{\phi} q_{o / o M}=$
$1-(d+\nu) q_{u / M} / d$. Furthermore, we have $q_{R / M}=1-q_{o / M}-q_{u / M}-q_{M / M}=1-q_{o / \times}-q_{u / M}-q_{M / M}$. Assuming that, in the neutral model, $q_{u / M} \approx q_{u / \times}$ and $q_{u / o M} \approx q_{u / o x}$, we are left with the task of computing the equilibrium density of $q_{u / o \times}$ in the monomorphic model. I show below that this yields an implicit expression in function of $q_{u / \times}$. After some rearrangements and simplifications, we obtain equation (10) in the main text.

Combining equations (9) et (10) in the main text, we find that the ESRE in a viscous population $(P=0)$ is the solution of

$$
\begin{equation*}
\frac{(\Delta b / b)}{(\Delta d / d)}=\frac{1+q_{u / \times}+(k+1) q_{o / \times}-r}{\left.1+q_{u / \times}+(k+1) q_{o / \times}\right)-r+k\left(q_{\times / \times}-q_{\times / u}-r\right)} \tag{S2}
\end{equation*}
$$

where $k=2 d / \nu$. Extensive simulations suggest that $q_{\times / \times}-q_{\times / u}<\phi$ (results not shown), and because $r>\phi$ (Lion and Gandon, 2009; Lion, 2009), we find that the right-hand side of equation (S2) is greater than 1. For a concave-down trade-off between b and d, this implies that the ESRE for $L=0$ is lower than the ESRE for $P=1$.

The equlibrium value of $q_{u / o \times}$ in the monomorphic population remains to be calculated. The starting point is the equation for the dynamics of $p_{o u}$ pairs. At equilibrium, this gives

$$
d p_{o \times}+\nu p_{u u}-\left(\nu+b \bar{\phi} q_{\times / o u}\right) p_{o u}=0
$$

Using the fact that $q_{\times / o u} p_{o u}=q_{u / o \times} p_{o \times}, q_{u / \times} p_{\times}=q_{\times / u} p_{u}$, and $q_{o / \times}=d / b$, we obtain

$$
\begin{equation*}
\bar{\phi} q_{u / o \times}=q_{o / \times}+\frac{\nu}{d}\left(q_{u / u}-q_{o / u}\right) \frac{p_{u}}{p_{\times}} \tag{S3}
\end{equation*}
$$

Now, the dynamics of $u u$ pairs is simply

$$
\frac{d p_{u u}}{d t}=d p_{u \times}-\nu p_{u u}
$$

which gives at equilibrium

$$
\begin{equation*}
q_{u / u}=\frac{d}{\nu} q_{\times / u} \tag{S4}
\end{equation*}
$$

Furthermore, the dynamics of the global density of u sites is

$$
\frac{d p_{u}}{d t}=d p_{\times}-\nu p_{u}
$$

so we have at equilibrium, using the fact that $q_{\times / u} p_{u}=q_{u / \times} p_{\times}$

$$
\begin{equation*}
\frac{p_{\times}}{p_{u}}=\frac{\nu}{d}=\frac{q_{\times / u}}{q_{u / \times}} \tag{S5}
\end{equation*}
$$

It follows from equation (S4) and (S5) that

$$
\begin{equation*}
q_{u / u}=q_{u / \times} \tag{S6}
\end{equation*}
$$

Putting equations (S3)-(S6) together, we obtain

$$
\bar{\phi} q_{u / o \times}=q_{o / \times}+q_{u / \times}-q_{o / u}
$$

and because $q_{o / u}+q_{u / u}+q_{\times / u}=1$, we have finally, using equations (S4) and (S5) once more

$$
\bar{\phi} q_{u / o \times}=q_{o / \times}-1+\frac{2 d+\nu}{d} q_{u / \times}
$$

which can be used in equation (S1) to obtain equation (S2).

References

R. Ferrière and J.-F. Le Galliard. Invasion fitness and adaptive dynamics in spatial population models. In J. Clobert, É. Danchin, A.A. Dhondt, and J.D. Nichols, editors, Dispersal. Oxford University Press, 2001.
S. Lion. Relatedness in spatially structured populations with empty sites: an approach based on spatial moment equations. J. theor. Biol., 260(1):121-131, 2009.
S. Lion and S. Gandon. Habitat saturation and spatial evolutionary ecology of altruism. Journal of evolutionary Biology, 22:1487-1502, 2009.
S. Lion and M. van Baalen. The evolution of juvenile-adult interactions in populations structured in age and space. Theor. Popul. Biol., 76(2):132-145, 2009.
D.A. Rand. Correlation equations and pair approximation for spatial ecologies. In J. McGlade, editor, Advanced ecological theory, pages 100-142. Blackwell, Oxford, 1999.
M. van Baalen and D.A. Rand. The Unit of Selection in Viscous Populations and the Evolution of Altruism. J. theor. Biol., 193:631-648, 1998.

[^0]: *School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX United Kingdom ; slion@biologie.ens.fr, +441784414369

